Search results

1 – 10 of 21
Article
Publication date: 20 October 2020

Yongliang Yuan, Shuo Wang, Liye Lv and Xueguan Song

Highly non-linear optimization problems exist in many practical engineering applications. To deal with these problems, this study aims to propose an improved optimization…

Abstract

Purpose

Highly non-linear optimization problems exist in many practical engineering applications. To deal with these problems, this study aims to propose an improved optimization algorithm, named, adaptive resistance and stamina strategy-based dragonfly algorithm (ARSSDA).

Design/methodology/approach

To speed up the convergence, ARSSDA applies an adaptive resistance and stamina strategy (ARSS) to conventional dragonfly algorithm so that the search step can be adjusted appropriately in each iteration. In ARSS, it includes the air resistance and physical stamina of dragonfly during a flight. These parameters can be updated in real time as the flight status of the dragonflies.

Findings

The performance of ARSSDA is verified by 30 benchmark functions of Congress on Evolutionary Computation 2014’s special session and 3 well-known constrained engineering problems. Results reveal that ARSSDA is a competitive algorithm for solving the optimization problems. Further, ARSSDA is used to search the optimal parameters for a bucket wheel reclaimer (BWR). The aim of the numerical experiment is to achieve the global optimal structure of the BWR by minimizing the energy consumption. Results indicate that ARSSDA generates an optimal structure of BWR and decreases the energy consumption by 22.428% compared with the initial design.

Originality/value

A novel search strategy is proposed to enhance the global exploratory capability and convergence speed. This paper provides an effective optimization algorithm for solving constrained optimization problems.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2017

Si Yuan, Kangsheng Ye, Yongliang Wang, David Kennedy and Frederic W. Williams

The purpose of this paper is to present a numerically adaptive finite element (FE) method for accurate, efficient and reliable eigensolutions of regular second- and fourth-order…

Abstract

Purpose

The purpose of this paper is to present a numerically adaptive finite element (FE) method for accurate, efficient and reliable eigensolutions of regular second- and fourth-order Sturm–Liouville (SL) problems with variable coefficients.

Design/methodology/approach

After the conventional FE solution for an eigenpair (i.e. eigenvalue and eigenfunction) of a particular order has been obtained on a given mesh, a novel strategy is introduced, in which the FE solution of the eigenproblem is equivalently viewed as the FE solution of an associated linear problem. This strategy allows the element energy projection (EEP) technique for linear problems to calculate the super-convergent FE solutions for eigenfunctions anywhere on any element. These EEP super-convergent solutions are used to estimate the FE solution errors and to guide mesh refinements, until the accuracy matches user-preset error tolerance on both eigenvalues and eigenfunctions.

Findings

Numerical results for a number of representative and challenging SL problems are presented to demonstrate the effectiveness, efficiency, accuracy and reliability of the proposed method.

Research limitations/implications

The method is limited to regular SL problems, but it can also solve some singular SL problems in an indirect way.

Originality/value

Comprehensive utilization of the EEP technique yields a simple, efficient and reliable adaptive FE procedure that finds sufficiently fine meshes for preset error tolerances on eigenvalues and eigenfunctions to be achieved, even on problems which proved troublesome to competing methods. The method can readily be extended to vector SL problems.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 April 2021

Guodong Ni, Ziyao Zhang, Zhenmin Yuan, Haitao Huang, Na Xu and Yongliang Deng

The purpose of this paper is to figure out the paths about transformation of tacit knowledge into explicit knowledge, i.e. tacit knowledge explicating (TKE) in real estate…

1035

Abstract

Purpose

The purpose of this paper is to figure out the paths about transformation of tacit knowledge into explicit knowledge, i.e. tacit knowledge explicating (TKE) in real estate companies, and determine the influencing factors of TKE in Chinese real estate companies to enable enterprises make better use of their knowledge resources.

Design/methodology/approach

The study adopted an exploratory design method using thematic analysis and grounded theory, and semi-structured interviews were conducted to collect data. The interviewees consisted of employees in different positions, who come from Chinese real estate companies with different ranking ranges and different knowledge management levels. Data collection was divided into two rounds for the identification of transformation paths and influencing factors.

Findings

This study has shown that 11 paths about TKE divided into solidified organization process and construction of organizational infrastructure go into effect within the real estate companies. Factors influencing TKE in real estate companies concern three main categories: organizational distal factors, contextual proximal factors and individual factors, including 21 subordinates in total. Furthermore, correlation between TKE paths and influencing factors is established.

Research limitations/implications

Research results may lack generalizability due to the method adopted. Therefore, researchers are encouraged to verify the outcomes of this research.

Practical implications

This research provides a new idea and solutions for the tacit knowledge management in real estate companies.

Originality/value

To the best of the authors’ knowledge, this study is the first to systematically identify paths and the influencing factors of TKE in real estate companies, contribute to the incipient but growing understanding of achievement of “tacit to explicit” and enrich the corporate tacit knowledge management literature.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 May 2018

Yongliang Wang, Yang Ju, Zhuo Zhuang and Chenfeng Li

This study aims to develop an adaptive finite element method for structural eigenproblems of cracked Euler–Bernoulli beams via the superconvergent patch recovery displacement…

Abstract

Purpose

This study aims to develop an adaptive finite element method for structural eigenproblems of cracked Euler–Bernoulli beams via the superconvergent patch recovery displacement technique. This research comprises the numerical algorithm and experimental results for free vibration problems (forward eigenproblems) and damage detection problems (inverse eigenproblems).

Design/methodology/approach

The weakened properties analogy is used to describe cracks in this model. The adaptive strategy proposed in this paper provides accurate, efficient and reliable eigensolutions of frequency and mode (i.e. eigenpairs as eigenvalue and eigenfunction) for Euler–Bernoulli beams with multiple cracks. Based on the frequency measurement method for damage detection, using the difference between the actual and computed frequencies of cracked beams, the inverse eigenproblems are solved iteratively for identifying the residuals of locations and sizes of the cracks by the Newton–Raphson iteration technique. In the crack detection, the estimated residuals are added to obtain reliable results, which is an iteration process that will be expedited by more accurate frequency solutions based on the proposed method for free vibration problems.

Findings

Numerical results are presented for free vibration problems and damage detection problems of representative non-uniform and geometrically stepped Euler–Bernoulli beams with multiple cracks to demonstrate the effectiveness, efficiency, accuracy and reliability of the proposed method.

Originality/value

The proposed combination of methodologies described in the paper leads to a very powerful approach for free vibration and damage detection of beams with cracks, introducing the mesh refinement, that can be extended to deal with the damage detection of frame structures.

Article
Publication date: 25 January 2023

Yongliang Wang

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under…

Abstract

Purpose

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under different crack damage locations, sizes and numbers, and analysing the influence mechanism of crack damage on buckling instability have become the needs of theoretical research and engineering practice. Accordingly, a finite element method was developed and applied to solve the elastic buckling load and buckling mode of curved beams with crack damage. However, the accuracy of the solution depends on the quality of mesh, and the solution inevitably introduces errors due to mesh. Therefore, the adaptive mesh refinement method can effectively optimise the mesh distribution and obtain high-precision solutions.

Design/methodology/approach

For the elastic buckling of circular curved beams with cracks, the section damage defect analogy scheme of a circular arc curved beam crack was established to simulate the crack size (depth), position and number. The h-version finite element mesh adaptive analysis method of the variable section Euler–Bernoulli beam was introduced to solve the elastic buckling problem of circular arc curved beams with crack damage. The optimised mesh and high-precision buckling load and buckling mode solutions satisfying the preset error tolerance were obtained.

Findings

The results of testing typical examples show that (1) the established section damage defect analogy scheme of circular arc curved beam crack can effectively realise the simulation of crack size (depth), position and number. The solution strictly satisfies the preset error tolerance; (2) the non-uniform mesh refinement in the algorithm can be adapted to solve the arbitrary order frequencies and modes of cracked cylindrical shells under the conditions of different ring wave numbers, crack positions and crack depths; and (3) the change in the buckling mode caused by crack damage is applicable to the study of elastic buckling under various curved beam angles and crack damage distribution conditions.

Originality/value

This study can provide a novel strategy for the adaptive mesh refinement for finite element analysis of elastic buckling of circular arc curved beams with crack damage. The adaptive mesh refinement method established in this study is fundamentally different from the conventional finite element method which employs the user experience to densify the meshes near the crack. It can automatically and flexibly generate a set of optimised local meshes by iteratively dividing the fine mesh near the crack, which can ensure the high accuracy of the buckling loads and modes. The micro-crack in curved beams is also characterised by weakening the cross-sectional stiffness to realise the characterisation of locations, depths and distributions of multiple crack damage, which can effectively analyse the disturbance behaviour of different forms of micro-cracks on the dynamic behaviour of beams.

Article
Publication date: 16 May 2023

Yongliang Wang

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate…

Abstract

Purpose

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate identification of the crack damage depth, number and location depends on high-precision frequency and vibration mode solutions; therefore, it is critical to obtain these reliable solutions. The high-precision finite element method for the free vibration of cracked beams needs to be developed to grasp and control error information in the conventional solutions and the non-uniform mesh generation near the cracks. Moreover, the influence of multi-crack damage on the natural frequency and vibration mode of a circularly curved beam needs to be detected.

Design/methodology/approach

A scheme for cross-sectional damage defects in a circularly curved beam was established to simulate the depth, location and the number of multiple cracks by implementing cross-section reduction induced by microcrack damage. In addition, the h-version finite element mesh adaptive analysis method of the Timoshenko beam was developed. The superconvergent solution of the vibration mode of the cracked curved beam was obtained using the superconvergent patch recovery displacement method to determine the finite element solution. The superconvergent solution of the frequency was obtained by computing the Rayleigh quotient. The superconvergent solution of the eigenfunction was used to estimate the error of the finite element solution in the energy norm. The mesh was then subdivided to generate an improved mesh based on the error. Accordingly, the final optimised meshes and high-precision solution of natural frequency and mode shape satisfying the preset error tolerance can be obtained. Lastly, the disturbance behaviour of multi-crack damage on the vibration mode of a circularly curved beam was also studied.

Findings

Numerical results of the free vibration and damage disturbance of cracked curved beams with cracks were obtained. The influences of crack damage depth, crack damage number and crack damage distribution on the natural frequency and mode of vibration of a circularly curved beam were quantitatively analysed. Numerical examples indicate that the vibration mode and frequency of the beam would be disturbed in the region close to the crack damage, and a greater crack depth translates to a larger frequency change. For multi-crack beams, the number and distribution of cracks also affect the vibration mode and natural frequency. The adaptive method can use a relatively dense mesh near the crack to adapt to the change in the vibration mode near the crack, thus verifying the efficacy, accuracy and reliability of the method.

Originality/value

The proposed combination of methodologies provides an extremely robust approach for free vibration of beams with cracks. The non-uniform mesh refinement in the adaptive method can adapt to changes in the vibration mode caused by crack damage. Moreover, the proposed method can adaptively divide a relatively fine mesh at the crack, which is applied to investigating free vibration under various curved beam angles and crack damage distribution conditions. The proposed method can be extended to crack damage detection of 2D plate and shell structures and three-dimensional structures with cracks.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 January 2023

Yongliang Wang

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary…

Abstract

Purpose

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary conditions, circumferential wave numbers and thickness-to-length ratios of moderately thick circular cylindrical shells. The theory of free vibration of rotating cylindrical shells is of utmost importance in fields such as structural engineering, rock engineering and aerospace engineering. The finite element method is commonly used to study the theory of free vibration of rotating cylindrical shells. The proposed adaptive finite element method can achieve a considerably more reliable high-precision solution than the conventional finite element method.

Design/methodology/approach

On a given finite element mesh, the solutions of the frequency mode of the moderately thick circular cylindrical shell were obtained using the conventional finite element method. Subsequently, the superconvergent patch recovery displacement method and high-order shape function interpolation techniques were introduced to obtain the superconvergent solution of the mode (displacement), while the superconvergent solution of the frequency was obtained using the Rayleigh quotient computation. Finally, the superconvergent solution of the mode was used to estimate the errors of the finite element solutions in the energy norm, and the mesh was subdivided to generate a new mesh in accordance with the errors.

Findings

In this study, a high-precision and reliable superconvergent patch recovery solution for the vibration modes of variable geometrical rotating cylindrical shells was developed. Compared with conventional finite element method, under the challenging varying geometrical circumferential wave numbers, and thickness–length ratios, the optimised finite element meshes and high-precision solutions satisfying the preset error limits were obtained successfully to solve the frequency and mode of continuous orders of rotating cylindrical shells with multiple boundary conditions such as simple and fixed supports, demonstrating good solution efficiency. The existing problem on the difficulty of adapting a set of meshes to the changes in vibration modes of different orders is finally overcome by applying the adaptive optimisation.

Originality/value

The approach developed in this study can accurately obtain the superconvergent patch recovery solution of the vibration mode of rotating cylindrical shells. It can potentially be extended to fine numerical models and high-precision computations of vibration modes (displacement field) and solid stress (displacement derivative field) for general structural special value problems, which can be extensively applied in the field of engineering computations in the future. Furthermore, the proposed method has the potential for adaptive analyses of shell structures and three-dimensional structures with crack damage. Compared with conventional finite element methods, significant advantages can be achieved by solving the eigenvalues of structures with high precision and stability.

Article
Publication date: 4 June 2021

Haiya Cai, Yongqing Nan, Yongliang Zhao and Haoran Xiao

The purpose of this study is to regard winter heating as a quasi-natural experiment to identify the possible causal effects of winter heating on population mobility. However…

Abstract

Purpose

The purpose of this study is to regard winter heating as a quasi-natural experiment to identify the possible causal effects of winter heating on population mobility. However, there are scant research studies examining the effect of atmospheric quality on population mobility. There also exists some relevant research studies on the relationship between population mobility and environmental degradation (Lu et al., 2018; Reis et al., 2018; Shen et al., 2018), and these studies exist still some deficiencies.

Design/methodology/approach

The notorious atmospheric quality problems caused by coal-fired heating in winter of northern China have an aroused widespread concern. However, the quantitative study on the effects on population mobility of winter heating is still rare. In this study, the authors regard the winter heating as a quasi-natural experiment, based on the of daily panel data of 58 cities of Tencent location Big Data in China from August 13 to December 30 in 2016 and August 16 to December 30 in 2017, and examine the impacts of winter heating on population mobility by utilizing a regression discontinuity method.

Findings

The findings are as follows, in general, winter heating significantly aggravates regional population mobility, but the impacts on population mobility among different cities are heterogeneous. Specifically, the effects of winter heating on population mobility is greater for cities with relatively good air quality, and the effects is also more obvious for big and medium-sized cities than that in small cities. In addition, different robustness tests, including continuity test, different bandwidth tests and alternative empirical model, are adopted to ensure the reliability of the conclusion. Finally, the authors put forward corresponding policy suggestions from the three dimensions of government, enterprises and residents.

Originality/value

First, regarding winter heating as a quasi-natural experiment, a regression discontinuity design method is introduced to investigate the relationship between winter heating and population mobility, which is helpful to avoid the estimation error caused by endogeneity. Second, the authors use the passenger travel “big data” based on the website of Tencent Location Big Data, which can effectively capture the daily characteristics of China's population mobility. Third, this study discusses the population mobility from the perspective of winter heating and researches population mobility before and after winter heating, which is helpful in enriching the research on population mobility.

Details

Kybernetes, vol. 51 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 January 2021

Yongliang Wang

Optimized three-dimensional (3D) fracture networks are crucial for multistage hydrofracturing. To better understand the mechanisms controlling potential disasters as well as to…

Abstract

Purpose

Optimized three-dimensional (3D) fracture networks are crucial for multistage hydrofracturing. To better understand the mechanisms controlling potential disasters as well as to predict them in 3D multistage hydrofracturing, some governing factors, such as fluid injection-induced stratal movement, compression between multiple hydraulic fractures, fracturing fluid flow, fracturing-induced microseismic damaged and contact slip events, must be properly simulated via numerical models. This study aims to analyze the stratal movement and microseismic behaviours induced by multistage propagation of 3D multiple hydraulic fractures.

Design/methodology/approach

Adaptive finite element–discrete element method was used to overcome the limitations of conventional finite element methods in simulating 3D fracture propagation. This new approach uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of fracture propagation path and computational efficiency. Engineering-scale numerical models were proposed that account for the hydro-mechanical coupling and fracturing fluid leak-off, to simulate multistage propagation of 3D multiple hydraulic fractures, by which the evolution of the displacement, porosity and fracture fields, as well as the fracturing-induced microseismic events were computed.

Findings

Stratal movement and compression between 3D multiple hydraulic fractures intensify with increasing proximity to the propagating fractures. When the perforation cluster spaces are very narrow, alternate fracturing can improve fracturing effects over those achieved via sequential or simultaneous fracturing. Furthermore, the number and magnitude of microseismic events are directly proportional to the stratal movement and compression induced by multistage propagation of fracturing fracture networks.

Originality/value

Microseismic events induced by multistage propagation of 3D multiple hydraulic fractures and perforation cluster spaces and fracturing scenarios that impact the deformation and compression among fractures in porous rock matrices are well predicted and analyzed.

Article
Publication date: 1 September 2023

Yongliang Wang, Liangchun Li and Yang Ju

Multi-well hydrofracturing is a key technology in engineering, and the evaluation, control and optimization of the fracturing network determine the recovery rate of unconventional…

Abstract

Purpose

Multi-well hydrofracturing is a key technology in engineering, and the evaluation, control and optimization of the fracturing network determine the recovery rate of unconventional oil and gas production. In engineering terms, altering well spacing and perforation initiation sequences changes fracture propagation behavior. Fracture propagation can result in fracture-to-fracture and well-to-well interactions. This may be attributed to the interference between fractures caused by squeezing of the reservoir strata. Meanwhile, the stratal movement caused by the propagation of the fractures may lead to either the secondary fracturing of wells with primary fractures or perforation to begin fracturing. Besides, the stratal compression and squeeze of multi-well hydrofracturing will cause earthquakes; the fracture size is different owing to the different fracturing scenarios, and the occurrence of induced microseismic events is still unknown; microseismic events also affect fracture orientation and deflection. If the mechanism of the above mechanical behavior cannot be clarified, optimizing the fracture network and reduce the induced microseismic disaster becomes difficult.

Design/methodology/approach

In this study, combined finite element-discrete element models were used to simulate the multi-well hydrofracturing. Numerical cases compared the fracture network, dynamic stratal movement and microseismic events at 50, 75 and 100 m well spacings, respectively, and varying initiation sequence of multiple horizontal wells.

Findings

From the results, fracture propagation in multi-well hydrofracturing may simulate the propagation and deflection of adjacent fractures and induce fracture-to-fracture and well-to-well interactions. As the well spacing increases, the effect of fracturing-induced stratal movement and squeezing deformation decrease. In alternate fracturing, starting from a well located in the middle can effectively reduce the influence of stratal movement on fracturing, and the fracturing scenario with cross-perforation can minimize the influence of stratal movement. The stratal movement between multiple wells is positively correlated to microseismic events, which behaviors can be effectively weakened by reducing the strata movement.

Originality/value

The fracture network, thermal-hydro-mechanical coupling, fracturing-induced stratal movement and microseismic events were analyzed. This study analyzed the intersection and propagation behavior of fractures in multi-well hydrofracturing, which can be used to evaluate and study the mechanism of hydrofracturing fracture network propagation in multiple horizontal wells and conduct fracture optimization research to form an optimized hydrofracturing scheme by reasonably arranging the spacing between wells and initiation sequences of perforation clusters.

1 – 10 of 21